
libregpio
Release 0.0.1

Roberto Chen

Feb 18, 2023

CONTENTS:

1 Installation 3

2 Importing the module 5

3 PIN Reference 7

4 How to use 9

5 API documentation 13

6 Compatibility with other boards 17

7 GitHub 19

8 References 21

9 Changelog 23

10 MIT Licence 25

Python Module Index 27

Index 29

i

ii

libregpio, Release 0.0.1

libregpio is a python module that aims to provide basic, straight-forward GPIO input/output operations for Libre
Computer “Le Potato” using gpiod

Note: This is an enthusiast project. It is not an official Libre Computer’s package.

CONTENTS: 1

libregpio, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

Before installation it is required to have gpiod installed on your board.

$sudo apt install gpiod

This module is not yet available to install via pip.

Source code: https://github.com/c0t088/libregpio

3

https://github.com/c0t088/libregpio

libregpio, Release 0.0.1

4 Chapter 1. Installation

CHAPTER

TWO

IMPORTING THE MODULE

To import the libregpio module:

import libregpio as GPIO

This way allows you to refer to it as GPIO for the rest of your program.

5

libregpio, Release 0.0.1

6 Chapter 2. Importing the module

CHAPTER

THREE

PIN REFERENCE

This module is designed to work with the 40-pin chip of Libre Computer AML-S905X-CC “LePotato”.

Note: Please, see Libre Computer’s GPIO Headers Reference for full functions documentation: https://docs.google.
com/spreadsheets/d/1U3z0Gb8HUEfCIMkvqzmhMpJfzRqjPXq7mFLC-hvbKlE/edit#gid=0

To access GPIO pins with this module, a class instance needs to be created. The pins are referred to by their GPIO
name.

This is an example of an IN (input) class instance set to use ‘GPIOX_4’ pin:

import libregpio as GPIO

a_pin = GPIO.IN('GPIOX_4')

7

https://docs.google.com/spreadsheets/d/1U3z0Gb8HUEfCIMkvqzmhMpJfzRqjPXq7mFLC-hvbKlE/edit#gid=0
https://docs.google.com/spreadsheets/d/1U3z0Gb8HUEfCIMkvqzmhMpJfzRqjPXq7mFLC-hvbKlE/edit#gid=0

libregpio, Release 0.0.1

8 Chapter 3. PIN Reference

CHAPTER

FOUR

HOW TO USE

As noted in the previous section, GPIO pins are handled as class instances based on their intended use. Here we will
run through some code examples.

Note: Please, take notice that the cleanup() method is used at the end of every example. This is recommended to
avoid leaving any pins on a high state after the end of your program.

4.1 IN Class examples

This section contains examples on how to use GPIO pins as inputs.

4.1.1 Read a current GPIO value

In this example we create an instance of the libregpio.IN class and call the input method to read the pin value:

import libregpio as GPIO

set pin GPIOX_12 to be used as an input
pin = GPIO.IN('GPIOX_12')

read pin value
value = pin.input()

print read value
print(value)

GPIO.cleanup()

9

libregpio, Release 0.0.1

4.1.2 Pull up and Pull down resistors

When using a pin as an input it may be at a floating state, sending unreliable values. To prevent this, the bias parameter
can be used in the input method to set pull-up or pull-down resistors.

This is the same example as above, but setting a pull-down bias:

import libregpio as GPIO

set pin GPIOX_12 to be used as an input
pin = GPIO.IN('GPIOX_12')

read pin value with a pull-down resistor
value = pin.input(bias='pull-down')

print read value
print(value)

GPIO.cleanup()

4.1.3 Wait for an edge event

In some applications you may want your program to wait for a falling-edge or rising-edge event. For this, you can use
the wait_for_edge method.

In this example we are using a PIR motion sensor connected to the GPIOX_12 pin. The program waits for a rising-edge
event before printing the corresponding value:

import libregpio as GPIO

set pin GPIOX_12 to be used as an input
pin = GPIO.IN('GPIOX_12')

wait for a rising-edge event. Bias is set to pull-down
value = pin.wait_for_edge(bias='pull-down', edge='rising')

print event value
print(value)

GPIO.cleanup()

Note: You can use the num_events parameter if you want to wait for more than one event occurrence.

10 Chapter 4. How to use

libregpio, Release 0.0.1

4.2 OUT Class examples

In this section, we will turn an LED on for three seconds using the different methods of the libregpio.OUT class.

4.2.1 output method

import libregpio as GPIO
from time import sleep

set pin GPIOX_5 to be used as an output
led = GPIO.OUT('GPIOX_5')

send a 1 value and return it to 0 after 3 seconds
led.output(1)
sleep(3)
led.output(0)

GPIO.cleanup()

4.2.2 high and low methods

import libregpio as GPIO
from time import sleep

set pin GPIOX_5 to be used as an output
led = GPIO.OUT('GPIOX_5')

set the pin output to high and return to low after 3 seconds
led.high()
sleep(3)
led.low()

GPIO.cleanup()

4.2.3 toggle method

import libregpio as GPIO
from time import sleep

set pin GPIOX_5 to be used as an output
led = GPIO.OUT('GPIOX_5')

set the pin output to high and return to low after 3 seconds
led.toggle()
sleep(3)
led.toggle()

GPIO.cleanup()

4.2. OUT Class examples 11

libregpio, Release 0.0.1

12 Chapter 4. How to use

CHAPTER

FIVE

API DOCUMENTATION

Warning: Although this module contains a PWM class, it is not currently working properly. Be aware that using
this class and its methods can lead to unexpected results.

class libregpio.IN(pin)
Bases: object

This is a class representantion of a GPIO pin to be used as an input.

Parameters
pin (str) – GPIO pin name (i.e. GPIOX_4)

input(bias='as-is')
Read an input value from a libregpio.IN object.

This method can read the pin input value at a given time.

Use the bias parameter to enable pull-up or pull-down modes.

Parameters
bias (str, optional) – pull-up, pull-down, as-is, disable

Returns
Input value read from GPIO pin (i.e. 0 or 1)

Return type
int

wait_for_edge(bias='as-is', edge='rising', num_events=1, active_low=False)
Returns an input value when a specific edge event is detected. This method is designed to stop your program
execution until an event is detected.

Parameters

• bias (str, optional) – pull-up, pull-down, as-is, disable

• edge (str, optional) – Type of event to wait for (rising, falling), defaults to ‘rising’

• num_events (Boolean, optional) – number of events to wait for. defaults to 1

• active_low – Set pin to active-low state (True, False). defaults to False.

Returns
1 for rising 0 for falling

Return type
int

13

libregpio, Release 0.0.1

class libregpio.OUT(pin)
Bases: object

This is a class representantion of a GPIO pin to be used as an output.

Parameters
pin (str) – GPIO pin name (i.e. GPIOX_4)

active_low()

Set libregpio.OUT object to active_low.

high()

Set a value of 1 to a libregpio.OUT object.

low()

Set a value of 0 to a libregpio.OUT object

output(value)
Set an output value to a libregpio.OUT object (i.e. 0 or 1).

Parameters
value (int) – output value to be sent to GPIO pin

toggle()

Toggle output value of a GPIO pin

class libregpio.PWM(pin, duty_cycle, freq)
Bases: Thread

This is a class representantion of a GPIO pin to be used as an PWM output.

Use only with pins compatible with PWM (pulse width modulation).

Creating the class instance does not automatically sends a PWM output.

Parameters

• pin (str) – GPIO pin name (i.e. GPIOX_4)

• duty_cycle (int) – duty cycle percentage

• freq (float) – frequency in Hertz

change_duty_cycle(duty_cycle)
Modify the current duty cycle

Parameters
duty_cycle (int) – duty cycle percentage

change_freq(freq)
Modify the current frequency

Parameters
freq (float) – frequency in Hertz

pulse_loop()

This method is called by start() to loop the pulse output on a different thread

Do not call this method outside of this class.

14 Chapter 5. API documentation

libregpio, Release 0.0.1

start(duty_cycle=None)
Start the PWM output.

You can update the duty cycle when starting this method.

Parameters
duty_cycle (int, optional) – duty cycle percentage, defaults to None

stop()

Stop the PWM output

It ‘cleans up’ the GPIO pin.

libregpio.cleanup(pins=None)
By Default, it sets all pins to 0 but you can pass a list if only specific pins need to be cleaned up.

It is recommended to use this method at the end of your program.

Parameters
pins (iterable, optional) – list/tuple of pin or pins by name, defaults to None

libregpio.set_chip(pin_name)
Select the gpio chip corresponding to the pin. Do not call this function.

Parameters
pin_name (str) – gpio pin name

Returns
gpio chip

Return type
str

15

libregpio, Release 0.0.1

16 Chapter 5. API documentation

CHAPTER

SIX

COMPATIBILITY WITH OTHER BOARDS

This module is designed to work with Libre Computer’s “LePotato”. However, it can be mapped to different boards if
needed, provided they are work with gpiod.

To achieve this, you need to modify the pin_mapping.py file to match your board.

Modify this dictionary to your preffered pin names and corresponding
linux number of said pins
PIN_NAME = {
"GPIOAO_5": 5,
"GPIOAO_4": 4,
"GPIOCLK_0": 98,
.
.
.

And you need to modify the set_chip()method in the libregpio.py file to set the corresponding chip of every pin.

def set_chip(pin_name):
modify this code to match your board gpio chips

chip_zero = ['GPIOAO_5','GPIOAO_4','GPIOAO_8','GPIOAO_9','TEST_N','GPIOAO_6']
if pin_name in chip_zero:

chip = 0
else:

chip = 1
return str(chip)

17

libregpio, Release 0.0.1

18 Chapter 6. Compatibility with other boards

CHAPTER

SEVEN

GITHUB

The source code is available to clone at: https://github.com/c0t088/libregpio

19

https://github.com/c0t088/libregpio

libregpio, Release 0.0.1

20 Chapter 7. GitHub

CHAPTER

EIGHT

REFERENCES

• OPi.GPIO (Copyright (c) 2018 Richard Hull): https://github.com/rm-hull/OPi.GPIO

• Libre Computer Header Reference: https://docs.google.com/spreadsheets/d/
1U3z0Gb8HUEfCIMkvqzmhMpJfzRqjPXq7mFLC-hvbKlE/edit#gid=0

21

https://github.com/rm-hull/OPi.GPIO
https://docs.google.com/spreadsheets/d/1U3z0Gb8HUEfCIMkvqzmhMpJfzRqjPXq7mFLC-hvbKlE/edit#gid=0
https://docs.google.com/spreadsheets/d/1U3z0Gb8HUEfCIMkvqzmhMpJfzRqjPXq7mFLC-hvbKlE/edit#gid=0

libregpio, Release 0.0.1

22 Chapter 8. References

CHAPTER

NINE

CHANGELOG

Version Description Date
0.0.1 Initial Version 2022-11-06

23

libregpio, Release 0.0.1

24 Chapter 9. Changelog

CHAPTER

TEN

MIT LICENCE

MIT License

Copyright (c) 2022 Roberto Chen

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

25

libregpio, Release 0.0.1

26 Chapter 10. MIT Licence

PYTHON MODULE INDEX

l
libregpio, 13

27

libregpio, Release 0.0.1

28 Python Module Index

INDEX

A
active_low() (libregpio.OUT method), 14

C
change_duty_cycle() (libregpio.PWM method), 14
change_freq() (libregpio.PWM method), 14
cleanup() (in module libregpio), 15

H
high() (libregpio.OUT method), 14

I
IN (class in libregpio), 13
input() (libregpio.IN method), 13

L
libregpio

module, 13
low() (libregpio.OUT method), 14

M
module

libregpio, 13

O
OUT (class in libregpio), 13
output() (libregpio.OUT method), 14

P
pulse_loop() (libregpio.PWM method), 14
PWM (class in libregpio), 14

S
set_chip() (in module libregpio), 15
start() (libregpio.PWM method), 14
stop() (libregpio.PWM method), 15

T
toggle() (libregpio.OUT method), 14

W
wait_for_edge() (libregpio.IN method), 13

29

	Installation
	Importing the module
	PIN Reference
	How to use
	IN Class examples
	Read a current GPIO value
	Pull up and Pull down resistors
	Wait for an edge event

	OUT Class examples
	output method
	high and low methods
	toggle method

	API documentation
	Compatibility with other boards
	GitHub
	References
	Changelog
	MIT Licence
	Python Module Index
	Index

